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Abstract: Simple equivalent permeability and reluctance models are obtained for the transformer core joints from
the analysis of the magnetic flux. It is shown that the flux variations in the joint zone can be fitted with simple
Gaussian expressions suitable for transformer design purposes. These models are derived from 2D and 3D finite
element simulations. The magnetic flux distribution in the transformer core joints is studied for wound cores and
stacked-lamination cores with step-lap configurations. The models of the study properly account for the effects of
core design parameters such as length of air gaps, number of laminations per step and overlap length. The
proposed models, which include saturation and anisotropy, are applied to grain-oriented silicon steel (GOSS)
and super GOSS. The new models are intended to estimate, right from the design phase, the magnetic flux
density, permeability and the reluctance in the joints. The maximum differences between the Gaussian models
of this study and finite element simulations are under 6%. The models of this study can be used to improve
core designs with the aim of reducing core losses and magnetising current. A comparison of the total losses
computed with the model of the study and measurements on a wound core distribution transformer showed
differences of about 2.5%.
T

1 Introduction
Increasingly important in the transformer industry is to reduce
the core losses and improve the estimation techniques right
from the design stage. With these objectives several studies
have been carried out in the last decades [1–18].
Computing the magnetic field distribution inside the core,
and particularly at the joints, is essential to estimate the core
losses. The joint zone contains the air gaps and overlaps that
cause the magnetic field lines to jump to adjacent
laminations. This deviation of the magnetic field lines with
respect to the rolling direction creates localised regions of
higher magnetic flux density and therefore increased losses.

Several papers have analysed the magnetic field
distribution in the joint zone. For example, Moses et al. [1]
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and Moses [2] present experimental results for the ‘T zone’
of three-phase, three-limb transformer cores. A study
considering the construction parameters, such as overlap
length, air-gap length and the use of step-lap is presented
in [3–5]. The influence of these parameters on the
magnetic field distribution was first analysed using finite
element method (FEM) in [6–10] and circuital models in
[11]. In [12–15] it was shown that the core losses are
dependent on the instantaneous value of the magnetic field
in the laminations, the physical properties of the core
material, the operation frequency and the construction
parameters of the joint area. In [16, 17] techniques are
presented to model the core. In [18] the permeability
model in the joints of the step-lap transformer core is
included. It has been reported that longitudinal magnetic
field distortion greatly influences the core losses. For
761
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example, Pfützner et al. [19] present interesting results in 3D
studies. Worth noting is that air-gap length, overlap length,
number of laminations per step and quality of the material
have significant effects in the core losses.

Curve fitting techniques have been used extensively to
model ferromagnetic materials’ properties; see for example
[20–22]. Among others, rational fractions [20],
exponentials [21], arctangents [22], step function [23] and
power curves [24] have been used. The common feature of
all existing curve fitting techniques is that they are applied
to represent the material properties: saturation and
hysteresis. In this paper we perform curve fitting to
characterise the flux density variations along the rolling
direction in a transformer core with special emphasis in the
joint zone; we assume that the magnetising characteristics
of the material are known.

The main contribution of this paper is to provide a simple
model to determine the magnetic flux density, permeability
and reluctance, properly considering saturation and the
anisotropic phenomena in the core joint zone. The new
model consists of two exponential terms; therefore it can be
easily included in transformer design computer codes. The
model offers an accurate and efficient alternative to the
more computer intensive FEM. The Gaussian model
derived in this paper gives the necessary information to
improve the core design by effectively accounting for the
complex 3D arrangements of commonly used core joints.
The computation of the effects of eddy currents and losses
are not within the scope of this paper and are left for a
sequel paper. However, for validation purposes, a
comparison of the losses computed using our model against
experimental results is presented. This shows a difference
of about 2.5%.

A large number of finite element simulations are
performed to compute the parameters of the model. This is
so because the model covers all commonly used
ferromagnetic materials for large power transformers. We
make the remark that although a large number of finite
element simulations were necessary to obtain the model, to
use the model in the loop of a design program only
requires the evaluation of very simple expressions. This
makes the model very efficient, yet it offers comparable
accuracy with FEM.

2 Core configurations
Two different designs of transformer cores are studied under
no-load conditions: wound core and multi-step lap column
core. In this paper, the wound core configuration is used
for single-phase transformers, whereas the step-lap column
type configuration is used for single- and three-phase
transformers; see Figs. 1 and 2.

All core configurations have one or more joints where the
magnetic field is not uniformly distributed. The path for the
2
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magnetic field in the laminations is commonly represented
with non-linear reluctances RL. A wound core
configuration with its magnetic path is shown in Fig. 1a.
Building the geometric model is very useful to visualise the
magnetic field distortion in the overlap and gap zones.
Fig. 1b shows the construction parameters: overlap length s,
air-gap length g, lamination thickness d and number of
laminations per step nl.

Another important core type for transformers is the step-
lap core. With this configuration, distribution and power
transformers are manufactured. Fig. 2 shows a step-lap core
including L and T joint types.

In this paper four of the most common grain-oriented
silicon steels (GOSSs) M4 (0.28 mm), M5 (0.3 mm), M6
(0.35 mm), and M5H2 (0.30 mm) are selected for study.
The B–H curves for the GOSS used in this paper are
taken from [25].

Figure 1 Wound type core

a Joint zone and reluctances
b Joint zone with nl ¼ 6 laminations per step
IET Electr. Power Appl., 2010, Vol. 4, Iss. 9, pp. 761–771
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Figure 2 Step-lap column type core

a Joint zones
b L joint with its reluctances
c T joint with its reluctances
3 Finite element simulations
The first step for the derivation of the model is the
computation of the distribution of the magnetic flux
density B in the laminations by finite element simulations
in 2D and 3D. We use the general potential formulation
given in [7]. We consider the anisotropy of the core
laminations. The permeability on the normal direction
along the lamination surface is taken as mr ¼ 10 000 as is
specified by the manufacturer in [25]. Comparatively, this
value is about three times smaller than the permeability of
the rolling direction, which varies in accordance with the
saturation curve.

All the simulations in this paper were performed using
two different commercially available FEM software
packages for electromagnetic field analysis. We considered
lamination-by-lamination in the analysis. However, full
cores were not computed wholly laminated in the 3D
analyses because of computer memory limitations. Instead,
we simulated groups of up to 36 laminations (for the three-
phase column-type cores). These lamination groups were
set in different positions until all the laminations in
the core were covered. The transformer tank walls
were represented by a magnetic insulation boundary
because we are not interested in the magnetic fields outside
the core.

All the simulations in this paper were performed using two
different commercially available FEM software packages for
electromagnetic field analysis: COMSOL Multiphysics
3.5a and ANSYS V11. 3D simulations with 36 laminations
require approximately 11 GB of memory with 600 000
elements and take less than 30 min to solve in a 12 GB
computer Core i7 CPU 2.67 GHz (64 bits operating
system). 2D simulations of an entire core consume about
6 GB of memory using close to 800 000 elements and take
about 20 min to solve in the same computer.

Fig. 3a shows the magnetic flux path along a lamination
close to the external edge of the pack. Fig. 3b shows, from
T Electr. Power Appl., 2010, Vol. 4, Iss. 9, pp. 761–771
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a 2D FEM analysis, that the magnetic flux follows the
rolling direction of the lamination.

From the 3D simulations of an L-joint, presented in
Fig. 4, one can note the following: (i) Fig. 4b shows that
the bulk of the magnetic flux follows the rolling direction;
(ii) Fig. 4c shows that the z component of the magnetic
flux density Bz only exists in the joint zone and (iii) as
expected, Bz is very small when it is compared to Bx and By.

Figure 3 Magnetic flux density

a Magnetic path for the analysis of a single-phase wound core.
Points 1–3 indicate change in the rolling direction
b Variation of the x and y components of the magnetic flux
density along the path
763
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4 Model
In this section Gaussian models are obtained for the
reluctance and magnetic flux density in the joint zone. To
obtain the model for the magnetic flux distribution, the
norm of the magnetic flux density is computed from

B(l) = |B(x,y,z)| =
���������������
B2

x + B2
y + B2

z

√
(1)

where l is the analysis path along the rolling direction; see

Figure 4 Magnetic flux density

a In an L joint of a step-lap column type core
b Bx and By components in a path in the centre of the laminations
c Bz in the centre of the lamination
4
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Figs. 3a and 4a; l is considered to pass in the centre of
each lamination. Figs. 5a and b show the magnetic flux
density in the joint zone for a wound core and a multi-step
lap column core, respectively. One can see that the
magnetic flux density in the joint zone, for both wound
and step-lap cores, follows a similar distribution pattern.
The norm of the magnetic flux density (1) is nearly
constant except at the joint region. To fit a model capable
of describing the variation of the flux density in the core
joints, the curves of Fig. 5 are conveniently divided into
five regions delimited by the markings 1–6.

It is possible to obtain a point-by-point model for the
relative permeability variations along l by combining the
norm of magnetic flux density with the corresponding
norm of the magnetic field intensity H(l) as

m(l) = B(l)

m0H (l)
(2)

The reluctance of a lamination is given by the ratio of the
magnetomotive force (mmf) and the magnetic flux fA

through its cross-sectional area A. Mathematically, the

Figure 5 Magnetic flux density norm

a In the joint zone of a wound core
b Magnetic flux density norm of L joint
IET Electr. Power Appl., 2010, Vol. 4, Iss. 9, pp. 761–771
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reluctance is computed from

R = mmf

wA

=
�

H dl�
B dA

= l

m0mRA
(3)

Equation (3) is used in the regions where the magnetic flux is
constant along the rolling plane direction. However, in the
joint zones where the magnetic flux is not constant we
need to obtain a reluctance model as function of l. This
can be done with the magnetic flux strength H(l) and the
magnetic flux density B(l) obtained point-by-point from
the FEM simulations. Therefore the expression for the
reluctance in the joint zone becomes

Re(l) =
�

H (l) dl�
B(l) dA

1/B(l)

1/B(l)
= 1

A

∫
dl

m(l)
(4)

where Re(l) is the equivalent reluctance in the path l over
the joint zone.

From the observed pattern of magnetic flux density in the
joint zone (Fig. 5) we have identified six points that divide
the zone into five well-defined regions (Fig. 6) that are
amenable for fitting curves. A small region between points
3 and 4, corresponding to the air-gap is included.
Modelling this small region is necessary because of the

Figure 6 Parameters needed for the models of the
magnetic flux density B(l) and permeability m(l) in the
joint zones
T Electr. Power Appl., 2010, Vol. 4, Iss. 9, pp. 761–771
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sudden change in permeability from a high value to m0

produced by the air gap.

With (4) it is possible to compute the reluctance for each of
the five sections in which we have divided the joint zone. To
obtain the model we have experimented fitting different
functions, for example, polynomials and rational functions
gave poor results. Conversely, the Gaussian model offered
practical, simple and accurate enough expressions suitable
for fitting peaks; see [26, 27].

We propose a Gaussian model to describe the magnetic
flux density and the permeability in each section of the
joint zone, given by

Bi(l) = a1,ie
−((l−b1,i)/g1,i)

2

+ a2,ie
−((l−b2,i)/g2,i)

2

(5)

mi(l) = a3,ie
−((l−b3,i)/g3,i)

2

+ a4,ie
−((l−b4,i)/g4,i)

2

(6)

where aj,i are coefficients related to amplitude; bj,i

coefficients are related to the position and gj,i are related to
the width of the peak. The subscript i represents the
section number (from 1 to 5), while j takes values from 1
to 4 [there are four constants in (5) and (6)].

Each section in the joint zone has limiting values xi as is
shown in Fig. 6. For the initial point of the joint zone,
x0 ¼ 0. The other xi are function of the construction
parameters: overlap length s, air-gap length g, lamination
thickness d, number of laminations per step nl and the
position (or number) that the lamination takes in the pack
(nll) where the magnetic flux density or the permeability
will be calculated.

For example, to determine the magnetic flux density of the
second lamination of a group of six laminations, we use
nl ¼ 6 and nll ¼ 2. The limits xi are derived from
geometry as

x1 = x0 + s(nl − nll ) (7a)

x2 = x1 + nl (2s − g)/2 (7b)

x3 = x2 + nl (s + g)/3 − g (7c)

x4 = x3 + 2g (7d)

x5 = x4 − g + nl (s − g)/2 (7e)

x6 = x0 + 3(nl )(s) + (s) (7f )

4.1 Numerical computation of
coefficients a, b and g

Coefficients a, b and g in (5) and (6) depend on the following
joint construction parameters: overlap length, air-gap length,
lamination thickness, number of laminations per step,
laminations properties and the cutting angle. A considerable
amount of data was generated by performing a large number
765
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of 2D FEM simulations to cover all the design range. About
30% of the simulations were also performed in 3D to
validate the 2D model. For a wound core design we have
performed 2D (FEM) simulations computing all possible
combinations when varying the following design parameters:

1. The overlap length was varied from 5 to 15 mm with steps
of 5 mm (three combinations);

2. The number of laminations per step was varied from 2 to
20 in steps of 2 (11 combinations);

3. Lamination properties (B–H curve and thickness) for
M4, M5, M6 and M5H2 (four combinations);

4. Flux density from 1.4 to 1.8 T in steps of 0.1 T (five
combinations);

5. The air-gap length was varied from 1 to 5 mm in steps of
1 mm (five combinations).

For a step-lap core, in addition to the above combinations,
we also varied the cutting angle from 30 to 458 in steps of 58
(giving three extra combinations).

Coefficients a, b and g are computed for each
combination described above. Fig. 7a shows the variation
pattern of coefficient a1,1 (representing the amplitude of
the first exponential of the first section) for nl ¼ 10 when
varying the design magnetic flux density from 1.5 to 1.8 T.
Fig. 7b shows the variation of a1,1, inside a pack of 20
laminations per step when the design flux density is varied
as before. Fig. 7(c) shows the variation pattern of a1,2,
(representing the amplitude of the first exponential of the
second section) varying the number of laminations per step.
Fig. 7(d ) shows the behaviour of a1,4 (the amplitude of the
first exponential of the fourth section) for nl ¼ 8. One can
see from Fig. 7 that the aj,i coefficients follow relatively
regular patterns. This makes them suitable for fitting
curves. Coefficients bj,i, represent position in the Gaussian
model and therefore depend on the limits xi. The gj,i

Figure 7 Behaviour of patterns for different a coefficients

a a1,1 (the amplitude of the first exponential of the first section) for the case when nl ¼ 10 while varying B0

b a1,1 for nl ¼ 10 varying B0

c a1,2 (amplitude of the first exponential of the second section) varying nl
d a1,4 (amplitude of the first exponential of the fourth section) for nl ¼ 8 varying B0
6 IET Electr. Power Appl., 2010, Vol. 4, Iss. 9, pp. 761–771
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coefficients are constant or function of the overlap (s) and the
gap length ( g).

4.2 Curve fitting for coefficients aj,i

Since we are interested in obtaining formulas to compute aj,i

amenable for a transformer design program, we performed
least-squares curve fittings to the large amount of data
generated above. In this way the aj,i can be easily
programmed and there is no need to use large look-up
tables. The best curve is fitted to the coefficients aj,i with
MATLAB’s curve fit tool that minimises the error. The
results are shown in Table 1 for the flux density model (5)
and in Table 2 for the permeability model (6).

One can observe that the values of coefficients aj,i for the
magnetic flux density model very much depend on the design
magnetic flux density (B0) and on the peaks (Bp2, Bp5) and
valleys (Bmn) of the flux density variation in the joint zone;
see Fig. 8. The peaks and valleys are computed from curve
fitting yielding:

For peak 2

Bp2 = 1.2707B0e0.0041nl − 0.2203e0.0854nl (8)

For peak 5

Bp5 = 1.2707B0e0.007264(n+1)−0.0105nl

− 0.2203e0.08858(n+1)−0.0918nl
(9)
T Electr. Power Appl., 2010, Vol. 4, Iss. 9, pp. 761–771
i: 10.1049/iet-epa.2010.0070
For valleys 3 and 4

Bmn = Bp3 = Bp4 = 1 − 1

nl
− 1.186e−0.198nl

( )

× e−(nll−1−(nl )/2.2)2

+ 1.186e−0.198nl

(10)

Similarly for the permeability model the aj,i coefficients are
function of the design peak and valley permeabilities, the
bj,i coefficients depend on the position and the gj,i

coefficients are constant or function of the overlap (s) and
the gap length ( g). The peaks and valleys are computed
from curve fitting yielding

mp2 = 3.533 × 10−5e0.3112nl + 3.278 × 10−5e−1.446nl (11)

For peak 5

mp5 = 3.533 × 10−5e0.3112(n−nl+1)

+ 3.278 × 10−5e−1.446(n−nl+1) (12)

For valleys close to the air-gap there are small values of B but
large values of H, we found that mn ¼ 0.05623. The initial
(or design permeability) md is computed from the relation
between B0 and H0 extracted from the B–H curves. The
details of the computation of coefficients a, b and g are
given in the flowchart diagram of Fig. 9.
Table 1 Coefficients for the magnetic flux density model (5)

i li a1,i b1,i g1,i a2,i b2,i g2,i

1 x1 ≤ li ≤ x2 Bp2 2 B0 x2 s B0 1 100

2 x2 ≤ li ≤ x3 2Bs1 + Bmn x3 0.5s Bs1 1 100

3 x3 ≤ li ≤ x4 g x3 g G x4 g

4 x4 ≤ li ≤ x5 2Bp5 + Bmn x4 s Bp5 1 100

5 x5 ≤ li ≤ x6 Bs4 2 B0 x5 2s B0 1 100

Table 2 Coefficients for the permeability model (6)

i li a3,i b3,i g3,i a4,i b4,i g4,i

1 x1 ≤ li ≤ x2 md x1 ns mp2 1 100

2 x2 ≤ li ≤ x3 mg x3 6g ms1 1 100

3 x3 ≤ li ≤ x4 ms2 x3 1024 mg x4 1024

4 x4 ≤ li ≤ x5 ms3 x4 Ng mp5 1 100

5 x5 ≤ li ≤ x6 ms4 2 md x5 S md 1 100
767

& The Institution of Engineering and Technology 2010



76

&

www.ietdl.org
4.3 Losses

To compute the eddy current losses in the region where the
magnetic flux density is uniform (most of the lamination

Figure 8 Family of curves of the magnetic flux density with
nl ¼ 6 by step for a wound core

Bp2, and Bp5 peaks of the magnetic flux density before and after
the air-gap, respectively and Bmn are valleys in the air-gap
8
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length, but excluding the joint zone), we use the classic
formulation given by [28]

Pek =
1

24
s(2pf )2d 3pLB2

k (13)

where Pek (W) is the Eddy current losses in the kth
lamination, f (Hz) is the operation frequency, s (S/m) is
the lamination conductivity, d (m) is the lamination
thickness, p (m) is the lamination width, L (m) is the
lamination length and Bk (T) is the average magnetic flux
density in the lamination.

At the joint zone where the magnetic field is not uniform
we use our model to compute the magnetic flux density. The
Gaussian model (5) provides the magnetic flux density at
each point of the joint zone for each lamination: Bk(l). To
compute the point-by-point losses in the joint zone we
modify (8) as follows

Pek =
1

24
s(2pf )2d 3p(Bk(l))2Ljk (14)
Figure 9 Flowchart diagram

a To determine the coefficients in the Gaussian model for B (5)
b Data flowchart diagram to determine the coefficients in the Gaussian model for m (6)
IET Electr. Power Appl., 2010, Vol. 4, Iss. 9, pp. 761–771
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where Bk(l) is the magnetic flux density value obtained
point-by-point on the joint zone with length Lj, for the
kth lamination.

The Gaussian model for the permeability is used to
compute the excitation current drawn by the core. For
wound cores, the expressions for the reluctance of each
lamination Rek, (3) and (4), can be used to compute an
equivalent reluctance of full core Rec . Since the laminations
are in parallel, the equivalent reluctance is computed as the
inverse of the sum of the inverse reluctances of the
individual laminations. Thus the excitation current in
amperes per turn is given by

Iexc =
BmAcLmc

Rec

(15)

where Bm (T) is the average magnetic flux density in the core,
Ac (m2) is the core cross-sectional area and Lmc (m) is the core
mean length.

5 Validation
5.1 Comparison of the Gaussian model
versus FEM

A point-by-point comparison between the calculations using
FEM and the model proposed in this paper was performed.
The magnetic flux density and the permeability in the joint
zone were determined for the two different core
configurations. We varied the number of laminations per
step from 2 to 20, the overlap distance from 5 to 15 mm
and the gap length from 1 to 5 mm. We varied the
magnetic flux density B0 from 1.4 to 1.8 T. The results
between the Gaussian model and the FEM calculations are
very close. The differences are smaller than 6%. Figs. 10
and 11 illustrate the results for a wound core transformer
with s ¼ 10 mm, g ¼ 1 mm, nl ¼ 6 and nll ¼ 3.

Figure 10 Comparison between the results of FEM and the
approximate model for the magnetic flux density B(l) with
nl ¼ 6 and nll ¼ 3 in a wound core
Electr. Power Appl., 2010, Vol. 4, Iss. 9, pp. 761–771
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Results for the L-type joint with different number of
laminations are shown in Fig. 12. Again, the largest
difference is less than 6% and occurs in the permeability
model close to points 2 and 5 of Fig. 5. The reason is that
in between those points we have the air-gap where there is
a sudden change from high permeability to m0. A slightly
larger difference (9%) occurs with the external laminations
of a group because their characteristics are different to the
other laminations; this difference, however, has been
proven to have a negligible effect on the overall
performance of the model.

GOSS M5 (0.30 mm) was used for the comparisons
illustrated in this section. However, similar results have
been obtained with our models (5) and (6) for other
commonly used transformer steels such as M4 (0.27 mm)
and M6 (0.35 mm). Good results were also obtained with
super-oriented electrical steel such as M5H2 (0.30 mm).

5.2 Loss measurements

To validate the model we measured the eddy current losses of a
wound core distribution transformer. The physical and design
characteristics are (Fig. 1 shows the construction parameters):
window width D ¼ 110 mm; limb width E ¼ 30.24 mm;
window height H ¼ 251 mm; lamination width
P ¼ 190.5 mm; lamination thickness d ¼ 0.3 mm; overlap
length s ¼ 10 mm; gap length g ¼ 1 mm; number of
laminations per step nl ¼ 10; design flux density
Bo ¼ 1.7 T. This distribution transformer was manufactured
using M5 GOSS operating at 60 Hz. The total core losses
measured were 84.12 W. After separating the eddy current
losses from the hysteresis and excess losses using the
procedure given in [29], we have Weddy(test) ¼ 19.28 W,
hysteresis losses 22.73 W (using 0.00374 W/lb/cycle, from
[25]) and the excess losses are 42.25 W.

Form the FEM simulation we obtain Weddy(FEM) ¼ 19.71 W
and using our model ((5) together with (14)), we obtain

Figure 11 Comparison between the results of FEM and the
approximate model for the permeability point-by-point m(l)
with nl ¼ 6 and nll ¼ 3 in a wound core
769
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Weddy(model) ¼ 20.23 W, which represents a relative difference of
2.58% with respect to measurements.

6 Conclusions
Gaussian models for the representation of the variation of the
magnetic flux density and permeability along the transformer
core joints have been obtained. The models have been derived
from numerous 2D and 3D FEM simulations using two

Figure 12 Magnetic flux density in the L joint

a With nl ¼ 6 and nll ¼ 4
b With nl ¼ 8 and nll ¼ 4
c With nl ¼ 10 and nll ¼ 4
0
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different commercial FEM software packages. Note,
however, that to use the models only the evaluation of very
simple expressions is needed. This makes the model
suitable for implementation in the design process loop. The
validation was made with a large number of FEM
simulations and measurements on a real transformer.

We have found a simple and accurate model by fitting a
Gaussian equation for the variation of the magnetic flux
density and the permeability in the joint zone. The new
permeability and flux density models are functions of the
design parameters of the core joints: overlap length, air-gap
length, number of laminations per step, lamination
properties, and the cutting angle. The benefit of the
proposed models is that (5) and (6) can be easily included
in transformer design computer programs. Additionally, the
CPU time consumed is negligible when compared with 2D
or 3D FEM simulations while yielding similar results.
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